
vic: A Flexible Framework for Packet Video

Steven McCanne
University of California, Berkeley
and Lawrence Berkeley Laboratory

mccanne@ee.lbl.gov

Van Jacobson
Network Research Group

Lawrence Berkeley Laboratory
van@ee.lbl.gov

ABSTRACT

The deployment of IP Multicast has fostered the develop-
ment of a suite of applications, collectively known as the
MBone tools, for real-time multimedia conferencingover the
Internet. Two of these tools — nv from Xerox PARC and ivs
from INRIA — provide video transmission using software-
based codecs. We describe a new video tool, vic, that ex-
tends the groundbreaking work of nv and ivs with a more
flexible system architecture. This flexibility is characterized
by network layer independence, support for hardware-based
codecs, a conference coordination model, an extensible user
interface, and support for diverse compression algorithms.
We also propose a novel compression scheme called “Intra-
H.261”. Created as a hybrid of the nv and ivs codecs, Intra-
H.261 provides a factor of 2-3 improvement in compression
gain over the nv encoder (6 dB of PSNR) as well as a sub-
stantial improvement in run-time performance over the ivs
H.261 coder.

KEYWORDS

Conferencing protocols; digital video; image and video com-
pression and processing; multicasting; networking and com-
munication.

1 INTRODUCTION

Over the past few years, a collaborative effort in the network
research community has produced a suite of tools for mul-
timedia conferencing over the Internet [16, 25, 26, 39, 42].
The driving force behind these tools is Deering’s IP Multi-
cast [11], a technology which extends the traditional IP rout-
ing model for efficient multipoint packet delivery. The in-
cremental deployment of IP Multicast has been realized by
building a (temporary) virtual multicast network on top of
the existing Internet, which Casner has dubbed the Multicast
Backbone, or MBone [6].

Copyright c 1995 by the Association for Computing Machinery, Inc. Per-

mission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage and that new copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted.

The first applications to provide video over the MBone
were the Xerox PARC Network Video tool, nv, and the
INRIA Video Conferencing System, ivs. While these two
systems share the goal of supporting low bit-rate multicast
video over the Internet, their approaches are markedly dif-
ferent. Ivs is an integrated audio/video conferencing sys-
tem that relies exclusively on H.261 [45] for video compres-
sion. By adopting a standardized algorithm, ivs can inter-
operate with a large installed base of H.320 video codecs as
an H.320-compliant bit stream is easily generated from an
H.261 packet stream by introducing H.221 framing in soft-
ware [20].

In contrast, nv is a “video-only” application that utilizes
a custom coding scheme tailored specifically for the Internet
and targeted for efficient software implementation [17]. Be-
cause of its low computational complexity, the nv codec can
run much faster than an H.261 codec. Even though H.261
has better compression performance than nv, nv is more of-
ten used by the MBone community because of its better run-
time performance.

Inevitably, in pioneering work such as nv and ivs, restric-
tions must be imposed on the design process to facilitate ex-
perimentation. For example, the ivs design assumes video
is represented as 4:1:1-decimated CCIR-601 YUV, while nv
assumes 4:2:2 decimation. Extending nv to support H.261
or ivs to support nv-style compression would require non-
trivial design changes. Also, since both systems are based
on software compression, their video capture models were
designed around uncompressed video. Extending either to
support hardware-based compression engines would be rel-
atively difficult.

In this paper, we describe a third model for a packet video
application, realized in the UCB/LBL video conferencing
tool, vic. Vic builds upon the lessons learned from ivs and nv
by focusing on flexibility. It is an extensible, object-oriented,
application framework that supports

� multiple network abstractions,

� hardware-based codecs,

� a conference coordination model,

� an extensible user interface, and

� diverse video compression algorithms.

Moreover, we have combined Frederick’s insights from the
nv codec with the compression advantages and standards



ACM Multimedia – November 1995 – San Franscisco, CA 2

compliance of H.261 in a novel scheme which we call Intra-
H.261. Intra-H.261 gives significant gain in compression
performance compared to nv and substantial improvement in
both run-time performance and packet-loss tolerance com-
pared to ivs.

Vic was originally conceived as an application to demon-
strate the Tenet real-time networking protocols [14] and to
simultaneously support the evolving “Lightweight Sessions”
architecture [24] in the MBone. It has since driven the evolu-
tion of the Real-time Transport Protocol (RTP) [40]. As RTP
evolved, we tracked and implemented protocol changes, and
fed back implementation experience to the design process.
Moreover, our experience implementing the RTP payload
specification for H.261 led to an improved scheme based
on macroblock-level fragmentation, which resulted in a re-
vised protocol [44]. Finally, the RTP payload specification
for JPEG [13] evolved from a vic implementation.

In the next section, we describe the design approach of the
MBone tools. We then discuss the essentials of the vic net-
work architecture. The network architecture shapes the soft-
ware architecture, which is discussed in the following sec-
tion. Finally, we discuss signal compression issues, deploy-
ment and implementation status.

2 COMPOSABLE TOOLS VS. TOOLKITS

A cornerstone of the Unix design philosophy was to avoid
supplying a separate application for every possible user task.
Instead, simple, one-function “filters” like grep and sort can
be easily and dynamically combined via a “pipe” operator to
perform arbitrarily complex tasks. Similarly, we use modu-
lar, configurable applications, each specialized to support a
particular media, which can be easily composed via a Con-
ference Bus to support the variety of conferencing styles
needed to support effective human communication. This ap-
proach derives from the framework proposed by Ousterhout
in [33], where he claims that large systems are easily com-
posed from small tools that are glued together with a simple
communication primitive (e.g., the Tk send command). We
have simply replaced his send primitive with a well-defined
(and more restrictive) Conference Bus protocol. Restricting
the protocol prevents the evolution of sets of tools that rely
on the specifics of each other’s internal implementations. In
addition to vic, our conferencing applications include the Vi-
sual Audio Tool (vat) for audio [26], a whiteboard (wb) for
shared workspace and slide distribution [25, 15], and the Ses-
sion Directory (sd) for session creation and advertisement
[23].

This “composable tools” approach to networked multime-
dia contrasts with the more common “toolkit framework”
adopted by other multimedia systems [10, 31, 37, 38]. Toolk-
its provide basic building blocks in the form of a code li-
brary with an application programming interface (API) to
that library providing high-level abstractions for manipulat-
ing multimedia data flows. Each distinct conferencing style
requires a different application but the applications are typ-
ically simple to write, consisting mostly of API calls with
style-dependent glue and control logic.

The toolkit approach emphasizes the programming model
and many elegant programming mechanisms have resulted

from toolkit-related research. To simplify the programming
model, toolkits usually assume that communication is ap-
plication independent and offer a generic, least-common-
denominator network interface built using traditional trans-
port protocols.

In 1990 Clark and Tennenhouse [8] pointed out that multi-
media applications could be simplified and both application
and network performance enhanced if the network proto-
col reflected the application semantics. Their model, Appli-
cation Level Framing (ALF), is difficult to implement with
toolkits (where application semantics are deliberately “fac-
tored out”) but is the natural way to implement “composable
tools”. And ALF-based, media-specific tools offer a simple
solution to multimedia’s biggest problem — high rate, high
volume, continuous media data streams. Since the tools are
directly involved in processing the multimedia data flows,
we can use ALF to tune all the performance-criticalmultime-
dia data paths within the application and across the network.

In addition to performance, flexibility is gained by com-
posing simple tools rather than using a monolithic appli-
cation built on top of some API. Since each tool deals di-
rectly with its media stream and sends only low-rate reports
like “X has started/stopped sending” on the Conference Bus,
the coordination agent necessary to implement a particular
conferencing scenario can be written in a simple interpreted
language like Tcl [34]. This allows the most volatile part
of the conferencing problem, the piece that melds audio,
video, etc., into a coordinated unit that meets particular hu-
man needs and expectations, to be simple and easy to evolve.
It also ensures that the coordination agents are designed or-
thogonal to the media agents, enforcing a mechanism/policy
separation: media tools implement the mechanism by which
coordination tools impose the policy structure appropriate
for some particular conferencing scenario, e.g., open meet-
ing, moderated meeting, class, seminar, etc.

3 NETWORK ARCHITECTURE

While the freedom to explore the communications protocol
design space fosters innovation, it precludes interoperabil-
ity. Since the MBone was created to study multicast scal-
ing issues, interoperability is especially important. Multicast
use at an interesting scale requires that a large group of peo-
ple spread over a large geographic region have some reason
to send and receive data from the group. One good way to
achieve this is to develop interoperable applications that en-
courage widespread use.

3.1 RTP

To promote such interoperability, the Audio/Video Trans-
port Working group of the Internet Engineering Task Force
(IETF) has developed RTP as an application level protocol
for multimedia transport. The goal is to provide a very thin
transport layer without overly restricting the application de-
signer. The protocol specification itself states that “RTP is
intended to be malleable to provide the information required
by a particular application and will often be integrated into
the application processing rather than being implemented as
a separate layer.” In the ALF spirit, the semantics of sev-



ACM Multimedia – November 1995 – San Franscisco, CA 3

UDP RMTP AAL5

RTIPIP ATM

RTP

Figure 1: RTP and the Protocol Stack

eral of the fields in the RTP header are deferred to an “RTP
Profile” document, which defines the semantics according to
the given application. For example, the RTP header contains
a generic “marker” bit that in an audio packet indicates the
start of a talk spurt but in a video packet indicates the end of
a frame. The interpretation of fields can be further refined by
the “Payload Format Specification”. For example, an audio
payload might define the RTP timestamp as a audio sample
counter while the MPEG/RTP specification [22] defines it as
the “Presentation Time Stamp” from the MPEG system spec-
ification.

Because of its ALF-like model, RTP is a natural match to
the “composable tools” framework and serves as the foun-
dation for vic’s network architecture. Since RTP is indepen-
dent of the underlying network technology, vic can simulta-
neously support multiple network protocols. Figure 1 illus-
trates how RTP fits into several protocol stacks. For IP and IP
Multicast, RTP is layered over UDP, while in the Tenet pro-
tocols, it runs over RMTP/RTIP [2]. Similarly, vic can run
directly over an ATM Adaptation Layer. In all these cases,
RTP is realized in the application itself.

RTP is divided into two components: the data delivery
protocol, and the control protocol, RTCP. The data deliv-
ery protocol handles the actual media transport, while RTCP
manages control information like sender identification, re-
ceiver feedback, and cross-media synchronization. Different
media of the same conference-level session are distributed
on distinct RTP sessions.

Complete details of the RTP specification are provided in
[40]. We briefly mention one feature of the protocol relevant
to the rest of the paper. Because media are distributed on
independent RTP sessions (and because vic is implemented
independently of other multimedia applications), the proto-
col must provide a mechanism for identifying relationships
among media streams (e.g., for audio/video synchroniza-
tion). Media sources are identified by a 32-bit RTP “source
identifier” (SRCID), which is guaranteed to be unique only
within a single session. Thus, RTP defines a canonical-
name (CNAME) identifier that is globally unique across all
sessions. The CNAME is a variable-length, ASCII string
that can be algorithmically derived, e.g., from user and host
names. RTCP control packets advertise the mapping be-
tween a given source’s SRCID and variable-length CNAME.
Thus, a receiver can group distinct RTP sources via their
CNAME into a single, logical entity that represents a given
session participant.

In summary, RTP provides a solid, well-defined protocol
framework that promotes application interoperability, while
its ALF philosophy does not overly restrict the application

design and, in particular, lends itself to efficient implemen-
tation.

4 SOFTWARE ARCHITECTURE

The principles of ALF drove more than the vic network ar-
chitecture; they also determined the overall software archi-
tecture. Our central goal was to achieve a flexible software
framework which could be easily modified to explore new
coding schemes, network models, compression hardware,
and conference control abstractions. By basing the design on
an objected-oriented ALF framework, we achieved this flex-
ibility without compromising the efficiency of the implemen-
tation.

ALF leads to a design where data sources and sinks within
the application are highly aware of how data must be repre-
sented for network transmission. For example, the software
H.261 encoder does not produce a bit stream that is in turn
packetized by an RTP agent. Instead, the encoder builds the
packet stream fragmented at boundaries that are optimized
for the semantics of H.261. In this way, the compressed bit
stream can be made more robust to packet loss.

At the macroscopic level, the software architecture is
built upon an event-driven model with highly optimized data
paths glued together and controlled by a flexible Tcl/Tk [34]
framework. A set of basic objects is implemented in C++ and
are coordinated via Tcl/Tk. Portions of the C++ object hi-
erarchy mirror a set of object-oriented Tcl commands. C++
base classes permit Tcl to manipulate objects and orches-
trate data paths using a uniform interface, while derived sub-
classes support specific instances of capture devices, display
types, decoder modules, etc. This division of low-overhead
control functionality implemented in Tcl and performance
critical data handling implemented in C++ allows for rapid
prototyping without sacrifice of performance. A very simi-
lar approach was independently developed in the VuSystem
[29].

4.1 Decode Path

Figure 2 roughly illustrates the receive/decode path. The el-
liptical nodes correspond to C++ base classes in the imple-
mentation, while the rectangular nodes represent output de-
vices. A Tcl script is responsible for constructing the data
paths and performing out-of-band control that might result
from network events or local user interaction. Since Tcl/Tk
also contains the user interface, it is easy to present control
functionality to the user as a single interface element that
might invoke several primitive control functions to imple-
ment its functionality.

The data flow through the receive path is indicated by the
solid arrows. When a packet arrives from the network, the
Network object dispatches it to the Demuxer which imple-
ments the bulk of the RTP processing. From there, the packet
is demultiplexed to the appropriate Source object, which rep-
resents a specific, active transmitter in the multicast session.
If no Source object exists for the incoming packet, an up-
call into Tcl is made to instantiate a new data path for that
source. Once the data path is established, packets flow from
the source object to a decoder object. Hardware and soft-



ACM Multimedia – November 1995 – San Franscisco, CA 4

X Window

X Window

X Window

DemuxerNetwork

TCL

Decoder

External
Video Out

State
Source2

Decoder

Hardware

Decoder
Hardware

Software

Source1
State

Figure 2: The receive/decode data path.

ware decoding, as well as multiple compression formats, are
simultaneously supported via a C++ class hierarchy. When
a decoder object decodes a complete frame, it invokes a ren-
dering object to display the frame on the output device, either
an X Window or external video output port.

Note that, in line with ALF, packets flow all the way to the
decoder object more or less intact. The decoder modules are
not isolated from the network issues. In fact, it is exactly
these modules that know best what to do when faced with
packet loss or reordering. C++ inheritance provides a con-
venient mechanism for implementing an ALF model without
sacrificing software modularity.

While this architecture appears straightforward to imple-
ment, in practice the decode path has been one of the most
challenging (and most revised) aspects of the design. The
core difficulty is managing the combinatorics of all possible
configurations. Many input compression formats are sup-
ported, and deciding the best way to decode any given stream
depends on user input, the capabilities of the available hard-
ware, and the parameters of the video stream. For exam-
ple, DEC’s J300 adaptor supports hardware decompression
of 4:2:2-decimated JPEG, either to an X Window or an ex-
ternal output port. The board can be multiplexed between
capture and decoding to a window but not between capture
and decoding to the external port. Also, if the incoming
JPEG stream is 4:1:1 rather than 4:2:2-decimated, the hard-
ware cannot be used at all. Finally, only JPEG-compressed
streams can be displayed on the video output port since the
system software does not support a direct path for uncom-
pressed video. Many other devices exhibit similar peculiar-
ities.

Coping with all hardware peculiarities requires building a
rule set describing legal data paths. Moreover, these rules
depend intimately on how the application is being used, and
therefore are complicated by user configuration. We have
found that the Tcl/C++ combination provides a flexible so-
lution for this problem. By implementing only the bare es-

sentials in C++ and exporting a Tcl interface that allows
easy creation, deletion, and configuration of C++ objects, the
difficulty in managing the complexity of the data paths is
greatly reduced.

4.2 Capture Path

We applied a similar architectural decomposition to the video
capture/compression path. As with the decoder objects, en-
coder objects perform both compression and RTP packeti-
zation. For example, the H.261 encoder fragments its bit
stream into packets on “macroblock” boundaries to mini-
mize the impact of packet loss.

Different compression schemes require different video in-
put formats. For instance, H.261 requires 4:1:1-decimated
CIF format video while the nv encoder requires 4:2:2-
decimated video of arbitrary geometry. One implementation
approach would be for each capture device to export a com-
mon format that is subsequently converted to the format de-
sired by the encoder. Unfortunately, manipulating video data
in the uncompressed domain results in a substantial perfor-
mance penalty, so we have optimized the capture path by
supporting each format.

A further performance gain was realized by carrying out
the “conditional replenishment” [32] step as early as possi-
ble. Most of the compression schemes utilize block-based
conditional replenishment, where the input image is divided
up into small (e.g., 8x8) blocks and only blocks that change
are coded and sent. The send decision for a block depends
on only a small (dynamically varying) selection of pixels of
that block. Hence, if the send decision is folded in with the
capture I/O process, most of the read memory traffic and all
of the write memory traffic is avoided when a block is not
coded.



ACM Multimedia – November 1995 – San Franscisco, CA 5

4.3 Rendering

Another performance-critical operation is converting video
from the YUV pixel representation used by most compres-
sion schemes to a format suitable for the output device. Since
this rendering operation is performed after the decompres-
sion on uncompressed video, it can be a bottleneck and must
be carefully implemented. Our profiles of vic match the ex-
periences reported by Patel et al. [35], where image render-
ing sometimes accounts for 50% or more of the execution
time.

Video output is rendered either through an output port on
an external video device or to an X window. In the case
of an X window, we might need to dither the output for a
color-mapped display or simply convert YUV to RGB for
a true-color display. Alternatively, HP’s X server supports
a “YUV visual” designed specifically for video and we can
write YUV data directly to the X server. Again, we use a C++
class hierarchy to support all of these modes of operation and
special-case the handling of 4:2:2 and 4:1:1-decimated video
and scaling operations to maximize performance.

For color-mapped displays, vic supports several modes of
dithering that trade off quality for computational efficiency.
The default mode is a simple error-diffusion dither carried
out in the YUV domain. Like the approach described in
[35], we use table lookups for computing the error terms, but
we use an improved algorithm for distributing color cells in
the YUV color space. The color cells are chosen uniformly
throughout the feasible set of colors in the YUV cube, rather
than uniformly across the entire cube using saturation to find
the closest feasible color. This approach effectively doubles
the number of useful colors in the dither. Additionally, we
add extra cells in the region of the color space that corre-
sponds to flesh tones for better rendition of faces.

While the error-diffusion dither produces a relatively high
quality image, it is computationally expensive. Hence, when
performance is critical, a cheap, ordered dither is available.
Vic’s ordered dither is an optimized version of the ordered
dither from nv.

An even cheaper approach is to use direct color quanti-
zation. Here, a color gamut is optimized to the statistics of
the displayed video and each pixel is quantized to the nearest
color in the gamut. While this approach can produce band-
ing artifacts from quantization noise, the quality is reason-
able when the color map is chosen appropriately. Vic com-
putes this color map using a static optimization explicitly
invoked by the user. When the user clicks a button, a his-
togram of colors computed across all active display windows
is fed into Heckbert’s median cut algorithm [21]. The result-
ing color map is then downloaded into the rendering mod-
ule. Since median cut is a compute-intensive operation that
can take several seconds, it runs asynchronously in a sepa-
rate process. We have found that this approach is qualita-
tively well matched to LCD color displays found on laptop
PCs. The Heckbert color map optimization can also be used
in tandem with the error diffusion algorithm. By concentrat-
ing color cells according to the input distribution, the dither
color variance is reduced and quality increased.

Finally, we optimized the true-color rendering case. Here,
the problem is simply to convert pixels from the YUV color
space to RGB. Typically, this involves a linear transforma-

vic ctvat wb

Figure 3: The Conference Bus.

tion requiring four scalar multiplications and six condition-
als. Inspired by the approach in [35], vic uses an algorithm
that gives full 24-bit resolution using a single table lookup on
each U-V chrominance pair and performs all the saturation
checks in parallel. The trick is to leverage off the fact that the
three coefficients of the Y term are all 1 in the linear trans-
form. Thus we can precompute all conversions for the tuple
(0; U; V ) using a 64KB lookup table, T . Then, by linearity,
the conversion is simply (R;G;B) = (Y; Y; Y ) + T (U; V ).

A final rendering optimization is to dither only the regions
of the image that change. Each decoder keeps track of the
blocks that are updated in each frame and renders only those
blocks. Pixels are rendered into a buffer shared between the
X server and the application so that only a single data copy is
needed to update the display with a new video frame. More-
over, this copy is optimized by limiting it to a bounding box
computed across all the updated blocks of the new frame.

4.4 Privacy

To provide confidentiality to a session, vic implements end-
to-end encryption per the RTP specification. Rather than rely
on access controls (e.g., scope control in IP Multicast), the
end-to-end model assumes that the network can be easily
tapped and thus enlists encryption to prevent unwanted re-
ceivers from interpreting the transmission. In a private ses-
sion, vic encrypts all packets as the last step in the transmis-
sion path, and decrypts everything as the first step in the re-
ception path. The encryption key is specified to the session
participants via some external, secure distribution mecha-
nism.

Vic supports multiple encryption schemes with a C++
class hierarchy. By default, the Data Encryption Standard
(DES) in cipher block chaining mode [1] is employed. While
weaker forms of encryption could be used (e.g., those based
on linear feedback shift registers), efficient implementations
of the DES give good performance on current hardware
(measurements are given in [27]). The computational re-
quirements of compression/decompression far outweigh the
cost of encryption/decryption.

4.5 The Conference Bus

Since the various media in a conference session are handled
by separate applications, we need a mechanism to provide
coordination among the separate processes. The “Confer-
ence Bus” abstraction, illustrated in Figure 3, provides this
mechanism. The concept is simple. Each application can
broadcast a typed message on the bus and all applications
that are registered to receive that message type will get a



ACM Multimedia – November 1995 – San Franscisco, CA 6

copy. The figure depicts a single session composed of audio
(vat), video (vic), and whiteboard (wb) media, orchestrated
by a (yet to be developed) coordination tool (ct).

A complete description of the Conference Bus architec-
ture is beyond the scope of this paper. Rather, we provide
a brief overview of the mechanisms in vic that support this
model.

Voice-switched Windows. A feature not present in the
other MBone video tools is vic’s voice-switched windows.
A window in voice-switched mode uses cues from vat to fo-
cus on the current speaker. “Focus” messages are broadcast
by vat over the Conference Bus, indicating the RTP CNAME
of the current speaker. Vic monitors these messages and
switches the viewing window to that person. If there are
multiple voice-switched windows, the most recent speakers’
video streams are shown. Because the focus messages are
broadcast on the Conference Bus, other applications can use
them for other purposes. For example, on a network that sup-
ports different qualities of service, a QoS tool might use the
focus message to give more video bandwidth to the current
speaker using dynamic RSVP filters [5].

Floor Control. All of the LBL MBone tools have the abil-
ity to “mute” or ignore a network media source, and the dis-
position of this mute control can be controlled via the Confer-
ence Bus. This very simple mechanism provides a means to
implement floor control in an external application. One pos-
sible model is that each participant in the session follows the
direction of a well-known (session-defined) moderator. The
moderator can give the floor to a participant by multicasting
a takes-floor directive with that participant’s RTP CNAME.
Locally, each receiver then mutes all participants except the
one that holds the floor. Note that this model does not rely on
cooperation among all the remote participants in a session.
A misbehaving participant cannot cause problems because it
will be muted by all participants that follow the protocol.

Synchronization. Cross-media synchronization can also
be carried out over the Conference Bus. Each real-time ap-
plication induces a bufferingdelay, called the playback point,
to adapt to packet delay variations [24]. This playback point
can be adjusted to synchronize across media. By broad-
casting “synchronize” messages across the Conference Bus,
the different media can compute the maximum of all ad-
vertised playout delays. This maximum is then used in the
delay-adaptation algorithm. In order to assure accurate syn-
chronization, the semantics of the advertised playback points
must be the delay offset between the source timestamp and
the time the media is actually transduced to the analog do-
main. The receiver buffering delay alone does not capture
the local delay variability among codecs.

Device Access. Each active session has a separate con-
ference bus to coordinate the media within that session. But
some coordination operations like device access require in-
teraction among different sessions. Thus we use a global
conference bus shared among all media. Applications shar-
ing a common device issue claim-device and release-device
messages on the global bus to coordinate ownership of an
exclusive-access device.

Conference Buses are implemented as multicast datagram
sockets bound to the loopback interface. Local-machine IP
multicast provides a simple, efficient way for one process

to send information to an arbitrary set of processes without
needing to have the destinations “wired in”. Since one user
may be participating in several conferences simultaneously,
the transport address (UDP destination port) is used to cre-
ate a separate bus for each active conference. This simplifies
the communication model since a tool knows that everything
it sends and receives over the bus refers to the conference
it is participating in and also improves performance since
tools are awakened only when there is activity in their con-
ference. Each application in the conference is handed the ad-
dress (port) of its bus via a startup command line argument.
The global device access bus uses a reserved port known to
all applications.

4.6 User Interface

A screen dump of vic’s current user interface, illustrating the
display of several active video streams, is shown in Figure 4.
The main conference window is in the upper left hand cor-
ner. It shows a thumbnail view of each active source next to
various identification and reception information. The three
viewing windows were opened by clicking on their respec-
tive thumbnails. The control menu is shown at the lower
right. Buttons in this window turn transmission on and off,
select the encoding format and image size, and give access to
capture device-specific features like the selection of several
input ports. Bandwidth and frame rate sliders limit the rate
of the transmission, while a generic quality slider trades off
quality for bandwidth in a fashion dependent on the selected
encoding format.

This user interface is implemented as a Tcl/Tk script em-
bedded in vic. Therefore, it is easy to prototype changes and
evolve the interface. Moreover, the interface is extensible
since at run-time a user can include additional code to mod-
ify the core interface via a home directory “dot file”.

A serious deficiency in our current approach is that vic’s
user interface is completely independent of the other media
tools in the session. While this modularity is fundamental
to our system architecture, it can be detrimental to the user
interface and a more uniform presentation is needed. For
example, vat, vic, and wb all employ their own user inter-
face element to display the members of the session. A better
model would be to have single instance of this list across all
the tools. Each participant in the listing could be annotated
to show which media are active (i.e., a participant may have
audio but no video).

We intend to evolve our tools in this direction by merg-
ing the user interfaces of the different tools into an inte-
grated interface. Each of the tools will be reduced to a bare
application that performs only network and media process-
ing. The integrated tool would orchestrate a given session
structure by configuring the bare tools over the Conference
Bus. Different application styles and arrangements could be
easily implemented as separate programs, using the script-
ing language to realize the user interface and orchestration.
Moreover, this decomposition makes the tools less depen-
dent on the X environment. For example, the bare vic pro-
cess would need only enough window system specific code
to draw pixels into a display window. With the forthcom-
ing port of Tcl/Tk to Windows95, our bare application frame-
work should readily migrate to the PC environment.



ACM Multimedia – November 1995 – San Franscisco, CA 7

Figure 4: Vic’s User Interface

5 SIGNAL COMPRESSION

The flexible software architecture presented in the previous
section is well suited for experimentation with new signal
compression schemes. This is especially important since
video compression algorithms have been traditionally de-
signed for constant bit-rate channels and new approaches
are required for transmission over heterogeneous packet net-
works [18, 41] like the Internet. In its current form, the Inter-
net is a relatively harsh environment for compressed video
signals. Packet loss rates are often significant and loss pat-
terns are bursty [4]. Compression schemes that rely on low
bit error rate or on channel coding techniques to effectively
reduce the bit error rate do not operate well under these con-
ditions.

For compression algorithms like MPEG and H.261,
packet loss causes sustained degraded quality. This is due to
their method of removing temporal redundancy: Both use
a motion-compensating predictor to predict blocks in the
current frame from previous (or future) frames then code the
residual prediction error. Because the prediction is based on
the decoded signal, the model assumes the decoder shares
an identical state. But when packet loss occurs, the decoder
state becomes mismatched and quality degrades with each
new frame. MPEG and H.261 both rely on intra-mode
updates to eventually resynchronize, but at low bit rates,
the resynchronization intervals can be tens or hundreds of
frames so the probability of error in any given interval is
high enough that the decoded bit stream is virtually never

error free. The solution is to reduce the resynchronization
interval, in the extreme case, to a single frame. This is the
model used in Motion-JPEG, where each frame is coded and
transmitted independently of all others; but this approach
results in low compression efficiency because much of the
transmission is redundant.

Conditional replenishment. Another solution to this
problem is to forego motion compensation, and instead em-
ploy a very rudimentary form of prediction. Frederick’s
insight in nv was to use an aggressive, block-based con-
ditional replenishment scheme. In this model, each video
frame is partitioned into small blocks and only the blocks
that change (beyond some threshold) are transmitted. Fur-
thermore, block updates are always intra-coded (i.e., depen-
dent only on the current block) to avoid persistent errors in a
predictor loop. At some low rate, a background process con-
tinuously refreshes all the blocks in the image to guarantee
that lost blocks are eventually retransmitted.

Conditional replenishment works well in practice for sev-
eral reasons. First, block updates are “self-correlated” in the
sense that a block is usually transmitted because of motion in
the scene. Therefore, that same block will likely be transmit-
ted again in the next because of the spatial locality of the mo-
tion. Thus a lost block update is often retransmitted immedi-
ately as a side-effect of conditional replenishment. Second,
the class of video currently sent over the Internet is primarily
teleseminars and video conferences where large static back-
grounds often dominate the scene and conditional replenish-
ment is highly effective. Third, because the replenishment



ACM Multimedia – November 1995 – San Franscisco, CA 8

decision can be carried out in the pixel domain as the first
step in processing, much of the encoder computation is shed
by coding only small portions of the image. Finally, compu-
tational complexity is further reduced by the fact that a copy
of the decoder need not be run at the encoder since there is
no prediction carried out.

The Nv Codec. The high-level compression model uti-
lized by nv is decomposed as follows [17]:

Threshold
Image
Blocks

8x8 Haar
Transform

Run-length
Coder

Haar Coef.

Here, 8x8 image blocks from the conditional replenish-
ment stage are transformed using a Haar wavelet decompo-
sition. A threshold is then applied to each coefficient such
that coefficients with magnitude below the threshold are set
to zero. This process creates runs of zeros, which are run-
length coded in the last stage. Since the Haar transform re-
quires only additions and subtractions and the threshold step
requires only two conditionals, the algorithm has very low
computational complexity. Unfortunately, compression per-
formance suffers because the Haar transform provides rel-
atively poor energy compaction of the signal [28] and the
entropy coder is based exclusively on fixed size run-length
codes.

The performance of the nv coder can be substantially im-
proved with the following changes:

(i) Replace the Haar transform with the discrete cosine
transform (DCT), which has good energy compaction
for images [28].

(ii) Replace the coefficient threshold stage with a uniform
quantizer to reduce the entropy of quantized coeffi-
cients.

(iii) Follow the run-length coder with a Huffman coder to
further compress the symbol stream.

The modified encoder structure then becomes:

DCT Huffman/RLImage
Blocks Quantizer

Uniform
Coder

Intra-H.261. These changes amount to applying the com-
pression advantages of the DCT-based approaches (JPEG,
MPEG, and H.261) to nv’s coder. Since the scheme so
closely matches H.261, it makes sense to create an H.261
variant that leverages off the ideas from nv. In fact, it turns
out that one can get the advantages of aggressive conditional
replenishment and intra-coded blocks with a fully-compliant
H.261 syntax.

In vic, we use this technique, which we call “Intra-H.261”.
Intra-H.261 uses only intra-mode H.261 macroblock types
and uses macroblock addressing to skip over unreplenished
blocks. Because the encoder uses only a small, simple subset
of the H.261 specification, the implementation is straightfor-
ward (a few hundred lines of C++).

We achieve reasonable computational performance by
folding quantization into the DCT computation and by us-
ing an efficient 80-multiply 8x8 DCT [36]. We experimented

with several vector-radix DCTs [7] but found that the sep-
arable row-column approach, though having asymptotically
higher complexity, performed better in the 8x8 case because
of reduced memory traffic. Furthermore, because Intra-
H.261 never sends inter-coded blocks, the algorithm need not
compute a prediction error signal. This prunes much of the
computation because it eliminates the need to run a copy of
the decoder within the encoder (i.e., it eliminates an inverse
quantization and inverse DCT of every encoded block).

Performance. Because the Intra-H.261 and nv compres-
sion schemes use similar conditional replenishment algo-
rithms, we can evaluate their relative compression perfor-
mance simply by ignoring the temporal dimension and com-
paring only their 2D image compression performance. Fig-
ure 5 shows the performance of the two approaches for the
canonical 8-bit, 512x512 grayscale “Lena” image. Both en-
coders were modified to omit block-addressing codes to al-
low the H.261 encoder to operate on a non-standard image
size. This modification has little impact on the results since
block-addressing accounts for a small fraction of the bit rate.

The peak signal-to-noise ratio (PSNR) is plotted against
rate (in bits per pixel). Multiple points were obtained by
varying the H.261 scalar quantizer and the nv dead-zone
threshold. Note that the nv algorithm was intended to oper-
ate with a non-configurable, fixed threshold, but we explored
other thresholds to complete a rate-distortion curve.

As seen in the graph, H.261 consistently outperforms the
nv coder by 6-7dB. Since transmissions are typically rate-
limited, we should consider a fixed distortion and compare
the corresponding bit rates. From this perspective, the nv bit
rate is two to three times that of H.261. For a rate-limited
transmission, this translates into a factor of two to three de-
crease in frame rate.

Unfortunately, the compression advantages of H.261
come at the cost of increased computational complexity.
Most modern workstations can handle the computational
burden of H.261 for typical MBone rates (128kb/s). How-
ever, performance problems on lower end workstations have
been reported. We believe these problems can be solved by
gracefully shedding load to adapt to the available CPU re-
sources. This work is currently underway.

We also compared the run-time performance of the H.261
encoders of vic and ivs. Vic version 2.6.2 and ivs version
3.4 were tested on an SGI Indy (133MHz MIPS R4600SC)
with the built-in VINO video device. Both applications were
compiled with gcc 2.6.2 using the -O2 flag. We ran the
programs individually, giving each application a CIF-sized
high-motion input and a low-motion input. In order to mea-
sure the maximum sustainable compression rate, we disabled
the bandwidth controls in both tools and ran the test on an un-
loaded machine. We measured the resulting frame rates by
decoding the streams on separate machines. The results are
as follows:

high-motion low-motion cpu. util.
ivs 3.5 f/s 20 f/s 100%
vic 8.5 f/s 30 f/s 40%

For the high motion case, almost all the blocks in each frame
are coded, so this gives a worst-case performance bound. For
the low-motion scene, vic ran at the full NTSC frame rate



ACM Multimedia – November 1995 – San Franscisco, CA 9

43210

50

5

Rate (bits/pixel)

P
S

N
R

 (
d

B
)

H.261

NV

876

45

40

35

30

25

Figure 5: Relative compression performance of nv and Intra-H.261.

and thus was operating below 100% utilization of the CPU.
We therefore measured the utilization and found it to be 40%,
which adjusts the 30 f/s measure to 75 f/s.

Heterogeneous formats. While vic supports the Intra-
H.261 scheme discussed above, it is also backward compat-
ible with nv and supports several other formats. The philos-
ophy is that any bit stream that can be produced by a sender
must be decodable by any receiver. That is, even if a sender
employs a hardware codec, all receivers must be able to de-
code the compressed stream in software. This means that we
must implement a software decoder for each supported com-
pression format. Vic currently supports H.261, the nv for-
mat, Sun’s CellB format, and Motion-JPEG.

Motion-JPEG. The prevalence of Motion-JPEG hard-
ware and widespread interest in using this medium over sev-
eral high-speed testbeds motivated us to support hardware
JPEG codecs in vic. Hence, vic must additionally be able to
decode JPEG streams in software. However, the high data
rates and temporal redundancy in Motion-JPEG lead to a
computationally intensive decode process, which would per-
form poorly without tuning.

We applied several standard optimizations to our decoder
(efficient DCT, inverse quantization folded with DCT, table
driven Huffman decoding, minimization of memory traffic),
but the most dramatic speedup was due to a novel compu-
tational pruning technique based on conditional replenish-
ment. We maintain a reference cache of the six lowest fre-
quency DCT coefficients of each block. As we decode a
new block, we compare the reference coefficients against the
newly decoded coefficients, and if the L1 distance is below
a configurable threshold, we skip the block entirely. Since
JPEG does not carry out conditional replenishment in the
compression algorithm itself, we apply conditional replen-

ishment at the receiver to prune unnecessary computation. A
similar thresholding algorithm is described in [19], though it
is used for a different purpose (i.e., motion detection at the
encoder).

6 IMPLEMENTATION STATUS AND DEPLOYMENT

Source code for vic has been publicly available1 since
November 1994. Over 4000 retrievals of the software were
made between the release date and March 1995. The com-
mon workstation platforms are all supported, and vic is
rapidly being ported to unsupported systems by the user
community.

Vic has been put to production use in several environ-
ments. An early version of vic was used by the Xunet re-
search community to carry out distributed meetings in Fall
1993. Because bandwidth was plentiful, each site could (and
did) transmit continuous video, placing the bottleneck in vic.
This experience led to the voice-switched window feature
and the model by which streams are only fully decoded when
being displayed.

Vic has been used in several class projects at U.C. Berke-
ley as well as in several external research projects. It was
the test application in a study of the Tenet real-time proto-
cols over the Sequoia 2000 network [3].

In Fall 1994, vic was used on the U.C. Berkeley campus
to distribute course lectures over the campus network. More
recently, we have equipped a seminar room for MBone trans-
mission and broadcast the Berkeley Multimedia and Graph-
ics Seminar during Spring 1995.

1ftp://ftp.ee.lbl.gov/conferencing/vic/



ACM Multimedia – November 1995 – San Franscisco, CA 10

In November 1994, a live surgery performed at the
U.C. San Francisco Medical School was transmitted to a
medical conference in Europe using vic’s Intra-H.261. Dur-
ing the surgical demonstration, the surgeon lectured to medi-
cal students at Middlesex and Whittington Hospitals in Lon-
don and in Gothenburg, Sweden.

Finally, vic has been used to broadcast several standard
MBone events, including NASA’s live space shuttle cover-
age, the IETF meetings, and USENIX keynote addresses.

7 FUTURE WORK

While the architecture is firmly in place and many features
implemented, several unfinished pieces remain. The net-
work delay-adaptation algorithm that is used in vat has not
yet been implemented in vic. Instead, frames are rendered as
soon as an end-of-frame packet arrives. Since small amounts
of frame jitter are tolerated, this problem is not severe but
lack of a playout schedule precludes cross-media synchro-
nization. We plan to implement the playback point algorithm
in vic and port vat to RTP in order to employ RTP cross-
media synchronization between vic and vat.

One of the disadvantages of software-based compression
schemes is the reliance on computational resources of the
local host. If a hardware codec or a high end workstation
sources a high rate video stream, a low end host might not
be able to decode and render every frame in the stream.
In this case, packets will be dropped by the operating sys-
tem due to input buffer overflows, and quality will degrade
dramatically. To address this problem, we are working on
a scheme in which the application adapts gracefully to the
available CPU resources by shedding load [12, 9]. While
several mechanisms for shedding load are already in place,
control algorithms to adapt to load fluctuations have not yet
been implemented.

The Conference Bus is in place but still evolving. More
work is needed on the coordination protocols and the user in-
terfaces for the different media tools must move toward an
integrated model.

Finally, while the Intra-H.261 coder is a step toward bet-
ter compression schemes for Internet video, we have merely
scratched the surface of this problem. In particular, since
H.261 is a “single-layer” algorithm, a uniform quality of
video is delivered to all receivers in a multicast transmis-
sion, even in the presence of heterogeneous link bandwidths
and processing capabilities. We are currently using the
vic framework to explore a new approach to the hetero-
geneous multicast video transmission problem, where we
jointly design the video compression algorithm with the net-
work transport protocol. We are developing a layered video
codec [30] based on subband/wavelet decomposition and
conditional replenishment, in tandem with an adaptive con-
gestion control scheme. By striping the compression layers
across different multicast groups [30, 43], receivers can lo-
cally adapt to fluctuations in network capacity by adding and
dropping layers.

8 SUMMARY

In this paper, we described the network and software archi-
tectures of vic. By building the design around application-
level framing, we achieved a highly flexible decomposition
without sacrificing performance. A key benefit of this flex-
ible framework is the ability to experiment with new video
coding algorithms, which we exploited with the develop-
ment of Intra-H.261. By applying elements of the nv codec
design to the traditional H.261 compression algorithm, we
produced a new coding scheme that balances the tradeoff
between good compression gain and robustness to packet
loss inherent in the Internet. Finally, we described our ap-
proach to building networked multimedia configurations out
of composable tools, and the mechanisms we deployed in vic
to support this composable architecture via the “Conference
Bus”.

9 ACKNOWLEDGMENTS

Domenico Ferrari originally proposed the development of
a video application and provided support for much of the
project. Hui Zhang and Elan Amir offered pointed advice
on this paper’s structure. We are grateful to Elan Amir,
Domenico Ferrari, Sally Floyd, Ron Frederick, Amit Gupta,
Deana Goldsmith, Fukiko Hidano, Vern Paxson, Hoofar
Razavi, Michael Speer, Thierry Turletti, Martin Vetterli, and
Hui Zhang for providing helpful comments on drafts of this
paper. We thank the anonymous reviewers for their excel-
lent and thorough feedback. Steven McCanne further thanks
Martin Vetterli and Raj Yavatkar for encouraging him to
write this paper. Finally, we would like to thank the users
in the MBone community who have provided valuable feed-
back, contributed to the implementation, fixed and reported
bugs, ported vic to numerous other platforms, and provided
a tangible motivation for this work.

This work was co-sponsored by the Lawrence Berkeley
National Laboratory and the Tenet Group of the University
of California Berkeley and of the International Computer
Science Institute. Support was provided by (1) an AT&T
Graduate Fellowship; (2) for the Lawrence Berkeley Na-
tional Laboratory: (i) the Director, Office of Energy Re-
search, Scientific Computing Staff, of the U.S. Department
of Energy, Contract No. DE-AC03-76SF00098, (ii) Sun Mi-
crosystems, and (iii) Digital Equipment Corporation; and (3)
for the Tenet Research Group: (i) the National Science Foun-
dation and the Advanced Research Projects Agency (ARPA)
under Cooperative Agreement NCR-8919038 with the Cor-
poration for National Research Initiatives, (ii) Digital Equip-
ment Corporation, and (iii) Silicon Graphics, Inc.

References

[1] BALENSON, D. Privacy Enhancement for Internet Electronic
Mail: Part III: Algorithms, Modes, and Identifiers. ARPANET

Working Group Requests for Comment, DDN Network Infor-
mation Center, Feb. 1993. RFC-1423.

[2] BANERJEA, A., FERRARI, D., MAH, B., MORAN, M.,
VERMA, D., AND ZHANG, H. The Tenet real-time protocol



ACM Multimedia – November 1995 – San Franscisco, CA 11

suite: Design, implementation, and experiences. To appear in
IEEE/ACM Transactions on Networking (1995).

[3] BANERJEA, A., KNIGHTLY, E., TEMPLIN, F., AND ZHANG,
H. Experiments with the Tenet real-time protocol suite on
the Sequoia 2000 wide area network. In Proceedings of ACM
Multimedia ’94 (San Francisco, CA, Oct. 1994).

[4] BOLOT, J.-C. End-to-end packet delay and loss behavior in
the Internet. In Proceedings of SIGCOMM ’93 (San Fran-
cisco, CA, Sept. 1993), ACM, pp. 289–298.

[5] BRADEN, R., ZHANG, L., ESTRIN, D., HERZOG, S., AND

JAMIN, S. Resource reservation protocol (RSVP) – version 1
function specification, July 1995. Internet Draft expires 1/96.

[6] CASNER, S., AND DEERING, S. First IETF Internet audio-
cast. ConneXions 6, 6 (1992), 10–17.

[7] CHRISTOPOULOS, C. A., SKODRAS, A. N., AND COR-
NELIS, J. Comparative performance evaluation of algorithms
for fast computation of the two-dimensional DCT. In Pro-
ceedings of the IEFFF Benelux and ProRISC Workshop on
Circuits, Systems and Signal Processing (Papendal, Arnhen,
Mar. 1994).

[8] CLARK, D. D., AND TENNENHOUSE, D. L. Architectural
considerations for a new generation of protocols. In Proceed-
ings of SIGCOMM ’90 (Philadelphia, PA, Sept. 1990), ACM.

[9] COMPTON, C., AND TENNENHOUSE, D. Collaborative load
shedding for media-based applications. International Confer-
ence on Multimedia Computing and Systems (May 1994).

[10] CRAIGHILL, E., FONG, M., SKINNER, K., LANG, R., AND

GRUENEFELDT, K. SCOOT: An object-oriented toolkit for
multimedia collaboration. In Proceedings of ACM Multime-
dia ’94 (Oct. 1994), ACM, pp. 41–49.

[11] DEERING, S. E. Multicast Routing in a Datagram Internet-
work. PhD thesis, Stanford University, Dec. 1991.

[12] FALL, K., PASQUALE, J., AND MCCANNE, S. Workstation
video playback performance with competitive process load.
In Proceedings of the Fifth International Workshop on Net-
work and OS Support for Digital Audio and Video (Durham,
NH, Apr. 1995).

[13] FENNER, W., BERC, L., FREDERICK, R., AND MCCANNE,
S. RTP Encapsulation of JPEG-compressed Video. Inter-
net Engineering Task Force, Audio-Video Transport Working
Group, Mar. 1995. Internet Draft expires 12/1/95.

[14] FERRARI, D., AND VERMA, D. A scheme for real-time com-
munication services in wide-area networks. IEEE Journal on
Selected Areas in Communications 8, 3 (Apr. 1990), 368–379.

[15] FLOYD, S., JACOBSON, V., MCCANNE, S., LIU, C.-G.,
AND ZHANG, L. A reliable multicast framework for light-
weight sessions and application level framing. In Proceedings
of SIGCOMM ’95 (Boston, MA, Sept. 1995), ACM.

[16] FREDERICK, R. Network Video (nv). Xerox Palo Alto Re-
search Center. Software on-line2 .

[17] FREDERICK, R. Experiences with real-time software video
compression. In Proceedings of the Sixth International Work-
shop on Packet Video (Portland, OR, Sept. 1994).

2ftp://ftp.parc.xerox.com/net-research

[18] GARRETT, M. W., AND VETTERLI, M. Joint source/channel
coding of statistically multiplexed real-time services on
packet networks. IEEE/ACM Transactions on Networking 1,
1 (Feb. 1993), 71–80.

[19] GHANBARI, M. Two-layer coding of video signals for VBR
networks. IEEE Journal on Selected Areas in Communica-
tions 7, 5 (June 1989), 771–781.

[20] HANDLEY, M. J. Using the UCL H.261 codec controller,
Dec. 1993. On-line html document3 .

[21] HECKBERT, P. Color image quantization for frame buffer dis-
play. In Proceedings of SIGGRAPH ’82 (1982), p. 297.

[22] HOFFMAN, D., FERNANDO, G., AND GOYAL, V. RTP Pay-
load Format for MPEG1/MPEG2 Video. Internet Engineer-
ing Task Force, Audio-Video Transport Working Group, June
1995. Internet Draft expires 12/1/95.

[23] JACOBSON, V. Session Directory. Lawrence Berkeley Lab-
oratory. Software on-line4.

[24] JACOBSON, V. SIGCOMM ’94 Tutorial: Multimedia confer-
encing on the Internet, Aug. 1994.

[25] JACOBSON, V., AND MCCANNE, S. LBL Whiteboard.
Lawrence Berkeley Laboratory. Software on-line5.

[26] JACOBSON, V., AND MCCANNE, S. Visual Audio Tool.
Lawrence Berkeley Laboratory. Software on-line6.

[27] JACOBSON, V., MCCANNE, S., AND FLOYD, S. A privacy
architecture for lightweight sessions, Sept. 1994. ARPA Net-
work PI Meeting presentation 7.

[28] JAIN, A. K. Fundamentals of Digital Image Processing.
Prentice-Hall International, Inc., 1989.

[29] LINDBLAD, C. J., WETHERALL, D. J., AND TENNEN-
HOUSE, D. L. The VuSystem: A programming system for
visual processing of digital video. In Proceedings of ACM
Multimedia ’94 (Oct. 1994), ACM, pp. 307–314.

[30] MCCANNE, S., AND VETTERLI, M. Joint source/channel
coding for multicast packet video. IEEE International Con-
ference on Image Processing (Oct. 1995).

[31] MINES, R. F., FRIESEN, J. A., AND YANG, C. L. DAVE:
A plug and play model for distributed multimedia application
development. In Proceedings of ACM Multimedia ’94 (Oct.
1994), ACM, pp. 59–66.

[32] MOUNTS, F. W. A video encoding system with conditional
picture-element replenishment. Bell Systems Technical Jour-
nal 48, 7 (Sept. 1969), 2545–2554.

[33] OUSTERHOUT, J. K. An X11 toolkit based on the Tcl lan-
guage. In Proceedings of the 1991 Winter USENIX Technical
Conference (Nashville, TN, Jan. 1991), USENIX.

[34] OUSTERHOUT, J. K. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

[35] PATEL, K., SMITH, B. C., AND ROWE, L. A. Performance
of a software MPEG video decoder. In Proceedings of ACM
Multimedia ’93 (Aug. 1993), ACM, pp. 75–82.

3http://www.cs.ucl.ac.uk/mice/codec manual/doc.html
4ftp://ftp.ee.lbl.gov/conferencing/sd
5ftp://ftp.ee.lbl.gov/conferencing/wb
6ftp://ftp.ee.lbl.gov/conferencing/vat
7ftp://ftp.ee.lbl.gov/talks/lws-privacy.ps.Z



ACM Multimedia – November 1995 – San Franscisco, CA 12

[36] PENNEBAKER, W. B., AND MITCHELL, J. L. JPEG Still
Image Data Compression Standard. Van Nostrand Reinhold,
1993.

[37] ROSEMAN, M., AND GREENBERG, S. GroupKit: A group-
ware toolkit for building real-time conferencing applications.
In Proceedings of the Conference on Computer-Supported
Cooperative Work (Oct. 1992).

[38] ROWE, L. A., PATEL, K. D., SMITH, B. C., AND LIU, K.
MPEG video in software: Representation, transmission, and
playback. In High Speed Network and Multimedia Comput-
ing, Symp. on Elec. Imaging Sci. & Tech. (San Jose, CA, Feb.
1994).

[39] SCHULZRINNE, H. Voice communication across the Internet:
A network voice terminal. Technical Report TR 92-50, Dept.
of Computer Science, University of Massachusetts, Amherst,
Massachusetts, July 1992.

[40] SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND JA-
COBSON, V. RTP: A Transport Protocol for Real-Time Ap-
plications. Internet Engineering Task Force, Audio-Video
Transport Working Group, Mar. 1995. Internet Draft expires
9/1/95.

[41] TAUBMAN, D., AND ZAKHOR, A. Multi-rate 3-D subband
coding of video. IEEE Transactions on Image Processing 3,
5 (Sept. 1994), 572–588.

[42] TURLETTI, T. The INRIA videoconferencing system (IVS).
ConneXions 8, 10 (Oct. 1994), 20–24.

[43] TURLETTI, T., AND BOLOT, J.-C. Issues with multicast
video distribution in heterogeneous packet networks. In Pro-
ceedings of the Sixth International Workshop on Packet Video
(Portland, OR, Sept. 1994).

[44] TURLETTI, T., AND HUITEMA, C. RTP payload for for
H.261 video streams. Internet Engineering Task Force,
Audio-Video Transport Working Group, July 1995. Internet
Draft expires 1/1/96.

[45] Video codec for audiovisual services at p*64kb/s, 1993. ITU-
T Recommendation H.261.


